If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-2p^2+12p+54=0
a = -2; b = 12; c = +54;
Δ = b2-4ac
Δ = 122-4·(-2)·54
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-24}{2*-2}=\frac{-36}{-4} =+9 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+24}{2*-2}=\frac{12}{-4} =-3 $
| 8xx=3 | | 1+2x=-2x+5 | | A^2+b^2=10^2 | | -7x+6=18+3x | | 6(x+1)=16 | | x+.18=56 | | 0=-5x+2x+6 | | 24=y-8 | | 12t^2+45-64t=0 | | (2*4)-b=3.6 | | -5x-10+4x=-19 | | -3(6-n)=2n-22 | | X+8=10+4x= | | (10-7)+n=7.1 | | 12x+54=-8x-4(5x+2) | | 12=4x-5x+1 | | 7/(x+3)=x-3 | | 5.5x+4(50-x)=245 | | 2g−2=2 | | 2(w-401)=198 | | 1/4(32x+16)-14=-2/5(45x-45) | | 2(2x+3)-7x+9=18 | | 2(w−401)=198 | | (2x)^2=10^2 | | 24(r+2)=768 | | 5a+a–2a=18 | | 6=5t-1/2t^2 | | 1a-4.5+2a=14+34a+8 | | 32(p+3)=608 | | x^2-16/9=0 | | 17x-(7x-4)=44 | | m-527/12=28 |